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The oscillation of the wall shear stress caused by imposing sound on a turbulent 
boundary-layer flow constitutes a boundary condition for the solution of the acoustic 
wave equation. The no-slip condition at the wall requires the excitation of a shear 
wave which is superimposed on the sound wave. The shear wave propagates into the 
turbulent medium. The wall impedance (shear stress/velocity ) of streamwise polarized 
shear waves has been measured in two different ways, namely (a)  by evaluating the 
phase velocity and the attenuation of a plane sound,wave which propagates in tur- 
bulent pipe flow, and ( b )  by evaluating the resonance frequency and the quality factor 
of a longitudinally vibrating glass pipe which carries turbulent flow. The results, 
which were obtained over a wide range of Strouhal numbers, exhibit very good agree- 
ment between the two measuring methods. The wall shear stress impedance is strongly 
affected by the turbulence. This indicates that the turbulent shear stress is modulated 
by the shear wave. At all measuring conditions, the propagation of the shear wave was 
confined essentially to the inner portion of the turbulent boundary layer. In principle, 
two different Strouhal numbers, based on inner and outer variables respectively, 
describe the dynamics of the Reynolds stress, even in the inner layer (Laufer & Badri 
Narayanan 1971). However, it turns out that the outer Strouhal number (based on 
the diameter and the centre-line velocity) has no noticeable effect on the wall shear 
stress impedance. The dependence of the impedance on the inner Strouhal number 
(based on the friction velocity and the viscosity) reveals that the shear wave is strongly 
reflected at the edge of the viscous sublayer. It is concluded that the stress-to-strain 
ratio at the edge of the viscous sublayer corresponds either to a viscoelastic medium 
or even to a medium with negative viscosity. 

1. Introduction 
Unsteady turbulent flows have been investigated mostly with large perturbations 

of the mean flow, which, in some cases, was even non-existent (see, for example, 
Eichelbrenner 1971; Brocher 1977). Only in recent years have several papers on small 
amplitude perturbations of turbulent flows been published (Kendall 1970; Hussain 
& Reynolds 1970a, 1972; Reynolds & Hussain 1972; Davis 1972, 1974; Ahrens 1973; 
Norris & Reynolds 1975; Acharya & Reynolds 1975; Ronneberger 1975). The experi- 
mental investigations in this field were essentially stimulated by Landahl’s (1967) 
suggestion t h a t  the turbulence in shear layers might be composed of waves (Hussain 
& Reynolds 1970b). Additional interest stems from the study of turbulent flow over 
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waving boundaries (Kendall 1970; Stewart 1970; Norris & Reynolds 1975). Further- 
more, the exploration of a turbulent flow responding to small variations in the 
boundary or initial conditions has the advantage of experimental and theoretical 
simplicity, which is achieved by the linearization of the governing equations. 

A mathematical description of a turbulent flow containing coherent perturbations is 
usually attained by decomposition of the field quantities into three parts (see, for 
example, Hussain & Reynolds 1970b); 

f = f + f + f  ’2 

which denote the time average of the quantity, the fluctuation caused by the coherent 
perturbation and the turbulent fluctuation, respectively. In  the case of periodic 
perturbations,fmay be extracted from the total quantity f by ‘phase averaging’ and 
subtraction of the mean part f. This corresponds, in the case of small amplitude per- 
turbations, to the determination of the frequency response of a very noisy system, 
the input and the output of which are the external perturbation and the quantity f, 
respectively. Standard techniques are available for the experimental accomplishment 
of this task. The response to small disturbances of the equilibrium state is a well 
establiahed method to describe the dynamics of a physical system, and the common 
relaxation methods have to be quoted in this context. 

A central problem in turbulence research is the determination of the turbulent 
stresses as a function of the mean flow field. Because of the well-known closure 
problem preventing the calculation of correlations between turbulently fluctuating 
quantities on the basis of the Navier-Stokes equations, it is not possible to predict the 
Reynolds stresses except by semi-empirical relations between the variables of the 
flow field. Many, more or less sophisticated, closure models have been developed 
which yield excellent results for various cases of steady turbulent flow. However, 
where these models have been applied to unsteady flows, the agreement between the 
predicted and experimental data has been poor in most cases. In  order to find reasons 
for the failure of these turbulence models more measurements of the perturbation 
stresses are needed. 

The initiative for the present investigation was provided by a study of sound 
propagation in turbulent pipe flow. The attenuation of a plane sound wave propagating 
through a pipe had been found to increase strongly compared with that for the medium 
at rest if the Strouhal number (based on the wall parameters of the boundary layer) 
was decreased below a critical value (Ahrens & Ronneberger 1971). The sound attenua- 
tion is caused by the diffusion of momentum and heat: the boundary conditions at  
the pipe wall (no slip, and no oscillation of the temperature) require that the sound 
wave excites a shear wave propagated by viscous and turbulent shear stresses and a 
heat conduction wave at  the wall. In  the case of low Mach number flow, the effect of 
these diffusion waves on the sound propagation is described by the complex ‘wall 
impedances ’ of these waves, i.e. by the ratio of the complex amplitudes of the shear 
stress and the velocity in the shear wave and the ratio of the conducted heat and the 
temperature in the heat conduction wave, the ratios being evaluated at the wall. 
The real parts of these impedances correspond to the loss of acoustic energy, so the 
real parts determine the attenuation of the sound wave whereas the imaginary parts 
of the impedances cause a change in the phase velocity. The diffusion of momentum 
and of heat is strongly influenced by turbulent convection. Thus both impedances - the 
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wall shear stress impedance z, = Zw/iiw and the wall heat conduction impedance 
z4 = gw/Pw- are affected by the turbulent transport of momentum and of heat. 

Our experimental investigation is concerned with the wall impedance of shear 
waves which are polarized in the mean-flow direction and propagate in the direction 
normal to the wall. One can excite these waves either by small perturbations of the 
mean-flow velocity (sound) or by longitudinal oscillations of the pipe wall. Both 
methods have been used. 

A general view of the propagation of a shear wave in the turbulent medium is 
obtained if one realizes that the ratio of shear stress to strain is a strongly varying 
complex function of the distance from the wall. Thus the shear wave propagates in 
an inhomogeneous medium and may be reflected. The reflected wave influences the 
wall shear stress impedance and thus information on the stress-to-strain ratio in the 
turbulence may be obtained from measurements of the impedance. 

In  the viscous sublayer the shear stress and t,he strain rate are related by the 
molecular viscosity. Thus one can easily calculate the propagation of the shear wave 
in the sublayer. The amplitude of the wave decays by a factor of e within the distance 
8, = (2v/o)*, which is known as the thickness of the Stokes layer in laminar oscillating 
flow or the acoustical boundary-layer thickness. Because of this rapid decay, the shear 
wave passes through the sublayer only at large values of the parameter 

2u: 4 83 = 8*u,/v = (--) 
(u, = (5,/p)9 = friction velocity, 5, = mean wall shear stress, p = density, v = kine- 
matic viscosity, w = angular frequency of the shear wave and a superscript + denotes 
a quantity non-dimensionalized by v and u,). The limited penetration depth of the 
shear wave implies that the wall shear stress impedance can be influenced by the 
turbulence only if 83 $ 1.  The second part of (1)  demonstrates that 83 is closely related 
to the Strouhal number wv/u;. If one assumes that the turbulent momentum transport 
in the inner portion of the boundary layer depends only on this Strouhal number, at 
least at large values of the Reynolds number based on the diameter of the pipe, the 
wall shear stress should be independent of the Reynolds number. In  $4.3 this question 
is discussed in detail. I n  fact, the dependence on the Reynolds number, if any, is rather 
small, so the normalized wall shear stress impedance 2, = x ,  (&pp)-t depends mainly 
on 83, which is used as Strouhal parameter here. 

It is clear from these considerations that the wall shear stress impedance is a 
function of just the Reynolds stresses which determine the propagation of coherent 
shear waves in the transition region of the turbulent boundary layer, and additional 
measurements similar to the experiment of Acharya & Reynolds (1975) are necessary 
to obtain definite values of these stresses. Nevertheless, the objective of the present 
investigation was not only tnhe prediction of the sound propagation in low Mach 
number turbulent pipe flow, but also the collection of information on the dynamic 
properties of the turbulence at the edge of the viscous sublayer. Thus, in a preliminary 
experiment, the wall shear stress impedance was measured also in a drag-reducing 
flow of an aqueous 20p.p.m. Separan solution. 

15-2 
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2. Determination of the wall shear stress impedance from the complex 
wavenumber of sound in turbulent air flow through pipes 

The experiment aimed at  the evaluation of the wall shear stress impedance z, 
from the sound propagation in turbulent pipe flow is described by Ronneberger (1976). 
Therefore only a summary is presented here. 

2.1. Relation between the wall shear stress impedance 
and the sound wavenumber 

The complex wavenumber k of a plane sound wave in low Mach number pipe flow can 
be calculated from the equations of conservation of momentum, matter and energy by 
averaging these equations over the cross-section. If the diffusion of momentum and of 
heat is confined to a thin layer at the wall and if the wavelength is large compared with 
the pipe diameter, one obtains 

(c = adiabatic sound speed, cp = specific heat at constant pressure, y = ratio of the 
specific heats, M = Mach number and ri = inner radius of the pipe). 83 and eventually 
the Reynolds number have to be kept constant when taking the limit N+ 0.83 < r t  
is automatically satisfied in the case of large Reynolds numbers. The Prandtl number 
Pr is of the order of unity in gases. z, can be evaluated from the sound wavenumber 
according to ( 2 )  if z, is known, and zn can be computed if the turbulent heat transport 
in the heat conduction wave is known. Here we assume that the heat transport can 
be described by an effective diffusion constant and that this heat conductivity is 
independent of the frequency at the low Strouhal numbers at which the heat con- 
duction wave penetrates the viscous sublayer; i.e. we calculate the propagation and 
the wall impedance of the heat conduction wave from turbulent heat transport data 
measured in steady flow by Ludwieg (1956).  Figure 1 shows the normalized wall heat 
conduction impedance as a function of 82 in air, according to Ronneberger (1975). 
The calculation of 2, = z,(&wpAcp)-4 was similar to that of Z,, which is described in 
$4 .2  ( A  = molecular heat conductivity). The coefficient of turbulent heat conductivity 
near the wall was assumed to be l . 0 8 p c p l ~ ] d i i / d y l  (1,  = mixing length), according to 
the findings of Ludwieg (1956).  Cebeci (1973) recommends a value of the eddy con- 
ductivity which depends on the distance from the wall as well as on the Reynolds 
number and on the Prandtl number, but for the case of our experiments his estimation 
is almost identical to the value adopted here. 

2.2. Measurement of the attenuation and of the phase 
velocity of plane sound waves in pipes 

Principle. The second term on the right-hand side of ( 2 )  is of order of magnitude 
10-1 m-l. As an accuracy of 1 yo was required, in a pipe about 1 m long, the ratios of 
sound pressures had to be determined with an accuracy of about It is not reason- 
able, under these conditions, to use a movable probe microphone (at 1 kHz, for example, 
the complex,amplitude of the sound pressure is changed by on the average, if 
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FIGURE 1. Normalized wall impedance of the heat conduction wave 
in air as a function of 82 (theoretical). 

the probe is shifted by only 0.05mm). Therefore ten microphones were built in the 
wall of the pipe at various axial positions. At each end of the pipe a loudspeaker can 
radiate into the pipe (see figure 3). So two different sound fields are generated. The 
output voltage of the vth microphone is given by 

q,(t) = Re(q,eiwt) = Re(av17,,eiut), K = 1 , 2 ,  v = 1 , 2 ,  ..., 10. (3) 

pVK are the complex amplitudes of the sound pressures a t  the vth microphone and 
uv is the complex sensitivity. The ten ratios q,/q, are independent of the 0; and are 
equal to f5vl /@v2.  Proceeding on the assumption that each of the sound fields consists 
of an incident wave and a reflected wave, one obtains the model equation for the 
sound pressure ratios at the ten microphones as 

Hence one can determine the wavenumber i and the three other unknown parameters 
A ,  rl and r, by a regression analysis ( A  is proportional to the ratio of the two loud- 
speaker voltages while r1 and r2 are the acoustic reflexion coefficients at either end of 
the measuring pipe). E is the average of the wavenumbers for upstream and down- 
stream propagation. However, in the model equation actually used, one has to include 
the gradient of 5 due to the pressure gradient in the pipe as well as the scattering of 
the sound waves by the microphones. 

It is sufficient to determine only the average of the two wavenumbers since only the 
wavenumbers extrapolated to M = 0 are used for the calculation of the wall shear 
stress impedance according to ( 2 ) .  It is possible, however, to evaluate also the difference 
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FIQURE 2. Electronic equipment for measuring and recording the amplitude and the phase of the 
microphone voltages. @, 12 bit shift register; 0, resistor network for convolution of the square- 
wave voltage with a cosine function; Q, loudspeaker; @, measuring pipe; Q, phase-sensitive 
rectifiers for one microphone; @, multiplexer; a, analog-to-digital converter; @, digital magnetic 
tape recorder. 

between the two wavenumbers: because the difference between the wavenumbers is 
zero in the medium at rest, one can determine the sensitivities of the microphones. 
Then, from the products flyl f l r 2 ,  the difference between the wavenumbers can be 
computed. 

Electronic equipment for the measurement and registration of the complex amplitudes 
of the microphone voltages. The amplitudes and phases of the ten rather noisy micro- 
phone voltages have to be determined simultaneously with a maximum relative error 
of about according to the required accuracy of the measurements. Furthermore, 
the data have to be recorded in a way which allows direct accessibility to the computer 
since extended numerical computation is needed along with the regression analysis. 

The equipment sketched in figure 2 fulfils these requirements at  relatively low 
expense. The simplest way to measure the amplitude and phase of a noisy sinusoidal 
voltage with complex amplitude 0 = ID I ei5’ is phase-sensitive rectification relative to 
two different phases and #2. Then one obtains two d.c. voltages 

i7< = aicos(#-#,)+b,, i = 1,2 ( 5 )  
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FIUURE 3. Sketch of the flow system for the sound propagation experiment. 0, fan; Q, muffler; 
Q, loudspeaker; @, measuring pipe; @, unechoic terminatrons; 0, positions for measuring 
static pressures and sound pressures; 0, flow straightener. 

(b, and b, are pomible offset voltages which have to be taken into account). The 
accuracy of 10 I and of 4 as calculated from cl and c2 is independent of 4 if 

141-421 = inn; 

the accuracy itself depends on the errors in the determination of u4, b, and q5i as well 
as on the constancy of these parameters as a function of time. Therefore the control 
voltages of the rectifiers are generated by digital equipment with a highly stabilized 
clock. The output of the lower shift register on figure 2 is inverted and fed back to the 
input. Starting with all bits set to zero, a square-wave voltage consisting of twelve 
zero and twelve unit sections circulates. The loudspeaker voltage is obtained by 
filtering the fundamental frequency component out of this square wave. 

The twenty phase-sensitive rectifiers are built up quite simply according to the 
circuit on the lower part of the figure. The RC low-pass filters have a time constant 
of 1 s. Small deviations from the ideal behaviour of the rectifiers (a, = a,, 1 - 421 = in, 
b, = b, = 0) are determined by calibration voltages which are delayed by multiples 
of the clock period and fed to the inputs of the rectifiers. The delay is achieved by the 
upper shift register depicted on figure 2. The above-mentioned deviations are of the 
order of They depend only weakly on the frequency and they are constant for 
many hours. The remaining errors are smaller than 

The twenty output voltages of the rectifiers are multiplexed and recorded on a 
digital tape recorder within a period of about 0.5s. The tape can be directly read by 
the computer. 

2.3. TheJow system 

The sound propagation was investigated within three pipes 70-100 diameters long 
(brass pipes with the inner wall polished and inner diameters of 13mm, 20mm and 
35 mm). Figure 3 shows the flow system. The air is sucked from the laboratory. The 
fan noise is kept away from the measuring pipe by a muffler. Furthermore, the ends 
of the pipe, i.e. the conical inlet and outlet, have low acoustical reflexion coefficients. 
At the entrance of the flow straightener the static pressure, the temperature and the 
relative humidity of the air are measured. The flow parameters within the measuring 
pipe, i.e. the Reynolds number, the Mach number and the speed of sound, are 
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FIGURE 4. Sound attenuation in turbulent pipe flow. a, and a- denote sound propagation in 
downstream and upstream direction, respectively. The pipe inner diameter is 20 mm. (a) 630 Hz, 
a, = 0.67 dB/m. (b)  3350 Hz, a. = 1.56 dB/m. The solid curves are calculated from the qutwi- 
laminar model. 

determined from these data and from the static pressures at the inlet and outlet of the 
pipe. For that purpose, these latter pressures pa andpb are 'calibrated' by measuring 
the static pressures at  those microphone positions which lie at  least 40 diameters 
behind the entrance of the pipe. Assuming the validity of Prandtl's drag law for 
circular pipes 

(6) 

(cr = friction coefficient, R = 2rias/vw = Reynolds number and ZL" = flow velocity 
averaged over the cross-section of the pipe), one can then evaluate the Reynolds 
number and the Mach number of the pipe flow and calculate the two positions 2, and 
xb at  which one would find the pressures p a  and p b  if the turbulent pipe flow were 
already fully developed at the entrance of the pipe. It turns out that xa and xb are 
weakly dependent on the Reynolds number and that the pressure gradient in the 
leading section of the pipe (30-40 diameters long) is somewhat smaller (5% at the 
most) than that in the fully developed pipe flow. The acoustical measuring section and 
this section of developing flow overlap (for about 20 diameters), but it is presumed 
that no significant error in the determination of the wall shear stress impedance is 
caused thereby since the deviation from fully developed flow is very small in this 
section of overlap, 

The Mach number did not exceed 0.3 in the two narrow pipes and did not exceed 
0.43 in the 35 mm pipe. 

C T ~  = 2.0 log (Rc,) - 0.8 
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FIGURE 5. Difference between experimental and calculated values of the 
sound wavenumber extrapolated to zero Mach number. 

2.4, Evaluation of the data 

At low S2(82 < 15) the variation of the normalized wall shear stress impedance 2, 
is rather small and, at high frequencies, the variation of the Mach number affects the 
complex sound wavenumber more significantly than the variation of 2,. Therefore 
the influence of the Mach number on the sound wavenumber was estimated by 
calculating the wavenumber from the turbulent flow profile while disregarding the 
turbulent transport of heat and of momentum. This is analogous t o  the quasi-laminar 
model used by Hussain & Reynolds ( 1 9 7 0 ~ )  to  demonstrate that  the turbulent 
stresses influence the propagation of coherent perturbations of the turbulent flow. 
The difference between the measured and the calculated wavenumber can be associ- 
ated with the variation of 2, and of 2, caused by the interaction between the diffusion 
waves and the turbulence. Figure 4 shows, as an example, the sound attenuation 
in the 20mm pipe a t  two frequencies as a function of the Mach number M .  The 
attenuation in the downstream and upstream directions is denoted by a, and a- 
respectively. The curves correspond to  the calculation mentioned above. Along the 
top of the diagram the values of 8; are given. It is clear from the diagram that the 
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experimental data depart from the calculated values only at 85 2 5. This agrees 
with the considerations concerning the propagation of the diffusion waves within 
the viscous sublayer ($1 ) .  Of course, the difference between the measured and 
calculated sound wavenumbers still depends on the Mach number but the difference 
in the wavenumbers can be extrapolated to  zero Mach number far more accurately 
than the measured wavenumber itself. According to ( 2 )  one obtains 

= i lim [Eexp(M, 82, R) - E,,,(M, 83, R)] Z,(SA, R) + ( y  - 1) Pr-4 Z,(S2, R)  
l + ( y - l ) P r - 4  M 4  

x r i / a , + l + i ,  ( 2 4  
010 = (WV/2C2)+. 

A dependence of the wall impedances 2, and Zq on the Reynolds number was not 
excluded from the beginning but, a t  the Reynolds numbers investigated here, no 
significant dependence was found. In  $ 4.3 this subject is discussed in detail. 

The wavenumber difference A& = 5, - ical, averaged over both directions of sound 
propagation, depends on the square of the Mach number at  constant 83 and R. Since 
M2 is very small in the c88e of our measurements the terms proportional to M4 and to 
higher powers of M 2  may be omitted in the Taylor series of AE(Mz). Thus the extra- 
polation of A$ to M = 0 is simply a linear regression with respect to M2.  The result 
of this extrapolation is plotted on figure 5 as a function of 83. The data points represent 
averages with respect to the Reynolds number. 

Now, according to $ 2 . 1 ,  the wall shear stress impedance 2, can be computed. The 
result, which is plotted on figure 12 (solid points), will be discussed in $ 4. First, another 
experimental determination of 2, is described in the following section. 

3. Determination of the wall shear stress impedance in a longitudinally 
oscillating tube containing a turbulent water flow 

The determination of the wall shear stress impedance 2, from sound propagation 
in turbulent air flow through pipes is based on the assumption that the turbulent heat 
transport in the heat conduction wave can be calculated from data which were obtained 
in steady flow. Therefore it is desirable to measure 2, by a second experiment, more 
directly. (The following is partly a summary of Ahrens’ thesis 1973.) 

3.1. Principle 

The idea of this experiment is to build the pipe containing the flow as a longitudinally 
vibrating resonator and to determine the change in 2, from the broadening and shift 
of the resonance curve. The half-width fH of the resonance curve and the resonance 
frequency f,, can be combined to give a complex resonance frequency Q/27r = fo + $ifH, 
which turns out to be a function of 2, (see $ 3.2) .  However, the variation of R with 
Z,, i.e. aQ/aZ,, is extremely small; therefore a very accurate experimental set-up and 
a sophisticated evaluation of the data are necessary. 

3.2. The resonator and the theoretical and experimental determination of aQ/aZ, 
Figure 6 shows the design of the resonator. The central part is the pipe carrying 
turbulent water flow. The ends of this pipe are attached to  the flow system. This is 
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FIQTJRE 6. Sketch of the quartz-glass resonator. 0, PZT 
rings for excitation and detection of the oscillation. 

possible without impairment of the resonance quality factor only if the particle 
velocity is zero at the points of attachment. For this purpose, the length of the outer- 
most cylindrical pieces of the resonator, and thereby the resonance frequency, is 
so adjusted that the length of the pipe carrying the flow equals half a wavelength 
of the longitudinal wave. So the particle velocity in the axial direction is a maximum 
in the mid-portion of the pipe. The dimensions of the pipe (inner diameter = 6-5mm, 
length = 400 mm andf, = 7.35 kHz) were chosen to attain the highest possible values 
of 83 for the maximum driving pressure (40atm) and the maximum flow rate (1800 
cm3/s). 

The resonator is made of quartz glass, which is advantageous for several reasons. 
First of all, this material has a high acoustical quality factor and the resonator can 
easily be fabricated with smooth and resistant surfaces. Furthermore, the lateral 
contraction is small and the sound speed is high; so the coupling between the oscilla- 
tion of the resonator and the water-born sound is small: variations of the complex 
resonance frequency Q caused by the sound radiation into the flow system are nearly 
incalculable. Last but not least, the material is transparent; thus, for example, the 
onset of cavitation can be observed; cavitation within the measuring pipe must be 
avoided since the strong interaction between the water-born sound and the cavitation 
bubbles results in substantial changes in Q. 

The oscillation of the resonator and of the water column was calculated to obtain 
a general view of the dependence of the complex resonance frequency on the wall shear 
stress impedance 2, and on the sound radiation into the flow system. The calculation 
is summarized in the appendix; it yields 

m2 pt r,2 - r: ck + 2 

1 +iw tan kw I - 26% 
(w + i tan kw 1)  (1 + iw tan kwl )  - 2iSi tan kwl 

X (7) 

(w and 6, characterize the water sound impedances at the ends of the measuring pipe; 
for their definitions and for the rest of the notation see the appendix). Equation (7) 
indicates that the part of 6Q caused by water sound radiation into the flow system 
(an,) may by far exceed the part due to the excitation of the shear wave (6Q,). This 
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may be seen more clearly from the ratio of these two parts of SSZ in the case of equal 
radiation impedances at  both ends of the measuring pipe (i.e. 8, = 0): 

[SSZ,/8SZtl = 0-76/(w+itankwZ(. (8) 

The numerical factor is valid for the actual resonator and for water at rest. In  spite 
of the low Poisson number of quartz glass there exists an extended range of radiation 
impedances win which I&Q,/SQ,l is considerable. At w = - i tan (k, E )  the water column 
within the measuring pipe has a resonance; then (7) is not valid. A more rigorous 
calculation reveals that in this case SQ can no longer be split into two parts depending 
on 2, and on w, respectively, and that, in any case, the quality factor of the resonator 
decreases drastically. The latter fact was used to avoid this critical radiation imped- 
ance; the impedance at the outlet of the measuring pipe was varied to yield the 
maximum possible quality factor of the resonator. It is very likely that ISQ,( as well 
as 1a(SQ,)/awI is small in this case. So small changes in w due to the variation of the 
flow velocity do not cause any noticeable changes in Q. Equation (7) contains a 

FIQURE 11. Mass transport vectors near the bottom in the presence of (a) an elliptical peninsula 
and ( b )  an estuary.f = 2R/w = 0.707, 5 = 0.1. 

. .  . -  
FIGURE 7. Half-width of the resonance curve of the resonator when filled with various mixtures 

of glycerin and water. The slope of the straight line has the theoretical value. 
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r< Compressed air 

FIQURE 8. Flow system for the resonator experiment. 0, pressure tank; 0, flexible pipe; 0, 
resonator; 0, valve; 0, collecting tank; @, swimmer driving a precision potentiometer. 

further quantity which cannot be determined except a t  high comput,ational expense, 
i.e. the effective length ltot of the total resonator. Therefore we decided to determine 
a(&Q)/aZ, experimentally. For this purpose the measuring pipe was filled with various 
glycerin-water mixtures. Then the half-width of the resonance curve should be a 
linear function of p d ,  according to ( 7 )  (disregarding the small influence of the sound 
speed, which depends slightly on the mixing ratio). The measured half-width is plotted 
on figure 7 as a function of put. The slope of the plotted straight line is computed 
from ( 7 )  assuming that the effective length of the resonator equals its actual 
length. Obviously this assumption is justified. 

3.3. Flow system 

Figure 8 shows a sketch of the flow system. Water contained in a pressure tank is 
driven through the resonator pipe by compressed air. A cylindrical tank collects the 
water. So the flow velocity in the measuring pipe may be determined from the rise of 
the water level in that tank. A maximum driving pressure of about 40 atm is necessary 
to yield the required flow velocity of about 50 m/s, and thereby two problems arise. 

(a )  The junction between the resonator and the flow system has to be leakproof at  
such high pressures and, on the other hand, the quality factor of the resonator must 
be essentially unimpaired by this junction. 

(b )  The static pressure is rather small at the outlet of the measuring pipe. This leads 
to cavitation, which influences the complex resonance frequency of the resonator 
rather strongly, as mentioned above. 

Figure 9 shows how these problems were overcome. Two rings of UHU-PLUS, a 
two-component cement, were glued to the ends of the measuring pipe. After curing, 
the sharpened ends of the tapered water supply pipes were pressed into the slightly 
yielding cement. It turned out that the quality factor of the resonator was practically 
unaffected by this procedure and, which is more important, that the complex resonance 
frequency was only weakly dependent on the water pressure. 

The increase in the pressure in the outlet diffuser leads to a low pressure at  the end 
of the measuring pipe. Therefore a flow resistance had to be installed at the outlet of 
the diffuser. Furthermore, various pipe fittings were inserted into the diffuser. So the 
water sound impedance at the outlet of the measuring pipe was varied to yield a 
value which was far from the critical impedance (see Q 3.2). 
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d 

FIQURE 9. Sketch of the junction 0 between the resonator @ and the flow system (0 is ring 
of UHU-PLUS). The pipe fittings @ and the flow resistances @ in the outlet diffuser are present 
to suppress cavitation and to adjust the optimum water sound impedance at the outlet of the 
pipe. ---, borings @ and channels for measuring the static pressure. 

The static pressures at  the inlet and a t  the outlet of the resonator pipe were 
measured through narrow borings in the tapered water supply pipes as depicted on 
figure 9. Two piezoelectric transducers served as pressure gauges. The static pressure 
gradient in the measuring pipe, as determined from these pressures, was somewhat 
higher (about 6 %) than that predicted by Prandtl's formula (6). From the pressure 
gradient dpldx, the friction velocity u, was computed according to 

3.4. Electronic equipment 
The measuring time is limited by the ratio of the pressure-tank volume to the flow 
rate. Therefore it was necessary to measure and to record the data automatically. 
Figure 10 shows the electronic equipment. The oscillation of the resonator was excited 
and picked up by two piezoelectric rings (PZT-rings) attached to both ends of the 
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FIGURE 10. Electronic equipment for the automatic measurement of the complex resonance 
frequency. @, PZT rings; Q, two-phase lock-on amplifier; 0, integral controller; @, voltage- 
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h 

resonator. The (complex) ratio of the output voltage 0, to the input voltage 0, is 
given by 

(10) 
C 

0 -Q '  
o0/q = - 

C is a slightly varying complex function of w and may be regarded as constant in the 
narrow range of frequencies considered here. The ' 45" frequencies ' w1 = 2n( f, - fH) 
and w2 = 2n( f, + &fH) are characterized by the fact that the phase difference between 
0, and oil i.e. g5(oo/oi), is shifted by 90" if one proceeds from w = w1 to w = w2: 

Furthermore, the absolute values I oJ0.l are equal at the 45' frequencies. The phase 
differences $[(O,/oi) (q)] and q5[(oo/q) (w2) ]  are practically independent of R. This 
fact is used to adjust the 45" frequencies automatically with the aid of a phase meter, 
an integral controller and a voltage-controlled oscillator, as sketched on figure 10. 
An automatic switch ensures that w1 and w2 are adjusted alternately. The adjusted 
frequencies are measured by a frequency counter and recorded by a printer. For 
monitoring purposes the amplitude 10, I is measured then 10, I and the static pressures 
at  the ends of the measuring pipe are multiplexed and recorded on a Y ,  T recorder. 
A second Y ,  T recorder records the water level in the collecting tank. 
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3.5. Measuring procedure and evaluation of the data 

The variation of the wall shear stress impedance Z7 is rather small in the range of 
83 covered by our experimental set-up. So the change SSQ(S3) in the complex resonance 
frequency caused by the variation of 2, is extremely small (of the order of 0.1 Hz). 
Therefore the measurements have to be conducted very carefully. First, the valve at 
the outlet of the resonator is shut (figure 8) and the pressure tank as well as the 
measuring pipe are pressurized up to the desired driving pressure. By briefly opening 
the valve, air bubbles possibly left in the flow system are washed away. Then the 
resonance frequency Q, and the static pressure p I  are measured. When, after opening 
the valve, the flow has become steady, the new resonance frequency Q,, the static 
pressures pZa and P z b  at the inlet and the outlet of the measuring pipe as well as the 
other quantities are recorded. Finally, after shutting the valve again, the resonance 
frequency Q3 and the pressure p 3  are determined. 

Several assumptions are necessary to evaluate SSQ(S3) from these data, i.e. to 
eliminate the influence of the static pressure on the complex resonance frequency. It 
is reasonable to assume that the observed influence of the static pressure on the 
resonance frequency results from some action of the pressure on the junctions between 
the resonator and the flow system. Furthermore, it is assumed that the variations of 
the resonance frequency caused by variations of the pressure (6Qp,, 8Qpb) and by 
variations of 2, (SSQ) are additive, i.e. 

Q,(t) is a slowly varying function of time containing all unpredictable changes in the 
resonance frequency. A more constricting assumption is 

Finally, it is reasonable to take Q,(t,) = $[Q,(t,) + Q0(t3)], which yields 

The data were evaluated according to this equation. 6Qp was determined from the 
data taken at zero flow velocity. Assuming that Q,(t) fluctuates irregularly, one 
obtains 

The mean values are meaningful since the data for a definite pressure were measured 
at many different times. 
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Figure 11 shows Im (S6R) as a function of 63, which is computed from the pressure 
drop in the measuring pipe according to (1) and (9): 

f - P 2 a - P 2 b 3  4 
aA-( pwv 21) ' 

The different symbols indicate the different series of measurements conducted after 
renewed clamping of the resonator between the inlet pipe and the outlet diffuser. 
6RP@) turned out to be quite different in each of these four cases. Yet the resulting 
values of 66R show no significant differences. So, obviously, the assumptions leading 
to (14) are adequate. Furthermore, the flow resistance in the outlet diffuser was 
varied without any effect on 6SQ. Figure 12 shows Z,(Sg) (open circles), which wm 
determined, according to (7), from averaged values of 66!2(6$). 

4. Discussion of the measurements 
4.1. Results 

The normalized wall shear stress impedance 2, obtained from the two experiments 
described above is plotted on figure 12(a) as a function of the frequency parameter 
62. While the variables 2, and 63 were chosen because of their close relation to our 
experimental conditions (fixed frequency, variation of the flow velocity), a more 
common frequency parameter is the Strouhal number wv/u: = 2/(~93)~. Therefore the 
wall shear stress impedance is also plotted as a function of the Strouhal number, on 
figure 1 2 ( b ) ;  the impedance is normalized here by pu,, which is independent of the 
frequency (2: = Z,/SJ). As mentioned above, a possible dependence on the Reynolds 
number was disregarded in these diagrams, and the values depicted here are averaged 
with respect to the Reynolds number. The good agreement between the results of the 
two quite different measuring methods is encouraging and supports the adequacy of 
the assumptions on which the evaluation of the measurements is based. These 
assumptions are essentially tha t  in the case of the resonator experiment ( 8  3) the 
water sound radiation into the flow system may be disregarded under the special 
conditions of the measurements and, more fundamental, that in the case of the sound 
propagation experiment (§ 2) the turbulent heat transport is controlled by the local 
temperature gradient independently of the frequency in the range of Strouhal numbers 
considered here. 

The measurement accuracy at  83 < 15 may be estimated from the scatter of the 
measured results, especially from the differences between the two measuring methods. 
At 63 > 15, data were obtained only from the sound propagation experiment. In  
particular, the error in Im 2, is likely to be rather large since Im 2, is determined 
from small changes in the phase velocity of the sound wave. So small errors in the 
Mach number (AMIM w 5 x 10-3) lead to rather large errors in Im 2, (about 2 x 10-1 
at 83 = 25). Thus it is open to question whether Im 2, increases at  high 63, again, as 
it seems to. Moreover, the error due to the uncertainty in the Mach number decreases 
with decreasing 63 approximately in proportion to (83)2. 
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4.2. Interpretation of the results 
A qualitative explanation of the trend of Z r ( 8 i )  can easily be given. At low 82 (high 
Strouhal numbers) the shear wave decays essentially within the viscous sublayer. So, 
as mentioned in 5 1, no influence of the turbulent transport of momentum on the wall 
impedance of the shear wave is possible and 2, = 1 + i as for the medium at rest (see 
figure 12a). At high values of 82, however, the viscous sublayer and the transition 
region are thin compared with the shear wavelength. Then, in a rough approximation 
one may simulate the turbulence by a rigid plate at some distance d from the wall 
(regarding the shear wave as being excited by oscillations of the wall); d corresponds 
to  the thickness of the viscous sublayer. So, at low Strouhal numbers, z, as well as 
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z,+ should be independent of the frequency, which implies that the imaginary part of 
the shear stress impedance tends to  zero (see figure 12 b ) .  

It is interesting to note that this very rough model of the interaction between the 
shear wave and the turbulence yields a trend for Z7(8A) which is in qualitative agree- 
ment with the experimental results over the entire range of 83 (see figure 13). The 
minimum of Re 2, at 82 w 11 is caused by interference between the shear wave excited 
at  the oscillating wall and the wave which is reflected from the rigid plate. The depth 
of the minimum depends on the magnitude of the reflexion coefficient as well as on its 
phase, because of the high attenuation of the shear wave. At the hypothetical rigid 
plate, the shear wave is totally reflected. However, the reflexion at the turbulence must 
be considered to take place not a t  a definite plane but in a more or less extended layer. 
So, in reality, the reflexion coefficient is smaller than unity owing to interference effects 
depending mainly on the thickness of the reflecting layer compared with the shear 
wavelength. The minimum of Re 2, tends to  be less pronounced because of the effect 
of this smeared reflexion, but the quasi-elastic properties of the turbulence, as pre- 
dicted by Davis (1974) and many others, will shift the phase of the reflexion coefficient 
such that the minimum of Re 2, becomes deeper. These trends may be viewed on 
figure 13; there the wall shear stress impedance is plotted as a function of 82, as 
computed from three different models. The thin solid curves depict the rigid-plate 
model mentioned above; d+ = 15 was chosen to fit the experimental data, which are 
represented by the thick solid curves. The dashed curves result from the assumption 
that the turbulent transport of momentum can be described by an eddy viscosity 
whereas the dash-dot curves were computed on the basis of the eddy viscoelasticity, 
which was approximated by Davis (1974). 

The eddy viscosity was determined from Prandtl’s mixing-length hypothesis 
assuming that the mixing length 1, itself is not modulated by the shear wave. This 
yields an effective kinematic viscosity 

vefi = v + 21: Idu/dyl. (16) 

The mixing length in the transition region is computed from van Driest’s (1966) 

( K  = 0.4 is KBrmBn’s constant and y = distance from the wall). Reynolds & Hussain 
(1972) have used an eddy viscosity which is half that in (16); they assumed that the 
turbulence energy is not modulated by the coherent perturbation of the turbulent 
flow. 

The eddy-viscoelasticity model of Davis (1974) is confined to the fully turbulent 
region of the boundary layer. So the application of this model to the transition region 
is more or less to be considered as a demonstration of the trend which is caused by the 
quasi-elastic behaviour of the turbulence. The eddy viscoelasticity normalized by the 
eddy viscosity in steady flow is proportional to the ratio d2/u‘v‘ of the normal (y- 
direction) stress to the shear stress; at low Reynolds numbers this was roughly 
modelled by 

v’2/u’vf = 1.7 tanh&y+ 

according to data measured by Reichardt (1951) and Eckelmann (1970). At high 
Reynolds numbers somewhat smaller values of this stress ratio are expected. 

-- 

-- 
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The calculation of the wall shear stress impedance is based on the momentum 
equation for the complex amplitude 0 of the velocity with a/ax = a/az = 0: 

Assuming 

yields 

This differential equation is integrated numerically starting with the approximation 

at sufficiently large y8. Finally one obtains 

The agreement between these computed wall shear stress impedances and the experi- 
mental data is only qualitative (figure 13) and there is no trend towards better agree- 
ment if one proceeds from the crude solid-plate model of the turbulence to the some- 
what more realistic eddy-viscosity model then to the eddy-viscoelasticity model. 

According to (18)-(22), the wall shear stress impedance Z7(8J) is a functional of 
the effective viscoelasticity vell(y+, 82) provided that the turbulence may be described 
by such a simple constitutive law. However, it  is not possible to determine verf(y+, 83) 
from the measured Z,(SA) without any further assumptions. Nevertheless, the deep 
minimum of Re 2, at 82 M 12 indicates that the reflexion of the shear wave at  the 
edge of the viscous sublayer is confined to a layer which is much thinner than that 
predicted by the last two models described above. 

Higher-order closure models have been applied to oscillatory flow through ducts, 
especially models which are based on the transport equation for the turbulent kinetic 
energy. Vasiliev & Kvon (1971), for example, calculate the oscillatory flow in a pipe. 
However, they evaluate their model at  large amplitudes of the mean-flow velocity 
oscillation, obtaining wall shear stresses which are far from the experimental values 
obtained here (figure 12). Acharya & Reynolds (1975) have compared the predictions 
from a similar model with experimental data which were obtained in a two-dimensional 
channel flow with superimposed small amplitude oscillationg of the mean-flow velocity, 
and found large discrepancies. Acharya & Reynolds conclude that the pressure-strain 
correlation is a crucial term which affects the dynamics of the Reynolds stresses. This 
means tha t  the turbulent shear stress caused by small amplitude perturbations cannot 
be described by an eddy viscosity or an eddy viscoelasticity (which are local quantities, 
whereas the pressure is a functional of the total velocity field). 

4.3. Dependence on  the Reynolds number 
The question of whether the wall shear stress impedance depends on the Reynolds 
number is closely related to the question of whether the dynamics of the Reynolds 
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stresses in the inner layer are influenced by interactions between the inner layer and 
the outer layer. A coupling between the inner and the outer layer has become obvious 
through investigation of the bursting phenomenon which was observed by Kline et al. 
(1967) in the viscous sublayer. Laufer & Badri Narayanan (1971) as well as Rao, 
Narasimha & Badri Narayanan (1971) found that the mean rate of occurrence of 
the bursting phenomenon depends on outer variables rather than on the inner para- 
meters of the turbulent boundary layer. Acharya & Reynolds (1975) found a rather 
peculiar dependence of the coherently oscillating velocity component 4 on the distance 
from the wall when the frequency of a velocity oscillation superimposed upon a two- 
dimensional channel flow was near the mean bursting frequency, and they suggest 
that this coincidence might be of importance. According to Laufer & Badri Narayanan 
(1971), the mean bursting frequency is given by 

WB w @iim/ri, (23 )  

82, w 0*3(Rcf)*, (24 )  

where Xim is the centre-line velocity. This yields a corresponding quantity 

where cf is the drag coefficient for turbulent pipe flow according to (6) and R is the 
Reynolds number based on the diameter and the flow velocity Us, which is the average 
over the cross-section. The weak dependence of 5is/5im on the Reynolds number has 
been disregarded. 

Another reason for a possible dependence on the Reynolds number of the wall shear 
stress impedance is the fact that, at low Reynolds numbers, the gap between the edge 
of the viscous sublayer and the outer portion of the boundary layer becomes narrow, 
and that, in any case, the shear wave may penetrate into the outer layer when 133 
becomes sufficiently large. Then the flow tends to follow quasi-steadily the oscillations 
of the wall. In  this case the wall shear stress impedance depends additionally on 
‘external’ conditions, such as whether (a) the axial pressure gradient dp/dx in the pipe 
is kept constant or (b) the flow rate through the pipe is a constant. Condition (a) 
leads to 

and condition (b )  yields at very large 83 

Thus 2, depends on the Reynolds number in this case. 
A quantity 8Sc will now be estimated which is such that Z,(83) is independent of 

R at 83 < (apart from a possible coupling between the inner and the outer layer) 
and such that the flow is quasi-steady at 83 B 133,. The shear wavelength should be 
comparable with the pipe radius at  82 = 8JC, and a reasonable estimate is 

y,(y, is approximated by the first term of (21) and, at  the low Strouhal numbers 
corresponding to a;,, veff is assumed to be twice the eddy viscosity in steady flow, 
according to (16). Then the integral in (27) should be proportional to  (rt /&$,)R-b 
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FIGURE 15. Relation between the outer and the inner variables of the boundary layer for the 
data of figure 14. -- -, estimates for the sound propagation experiment; -, oscillating pipe 
experiment. At 8;(Rc,)-+ = 0.3 the frequency of the shear wave and the mean bursting frequency 
coincide. 

(scaling the eddy viscosity by outer variables). Introducing data for the eddy viscosity 
measured by Reichardt (1951), (27) yields 

Again, G8/Zm has been assumed to be constant. By the way, the same result is obtained 
if one considers the distance from the inlet of a pipe and the corresponding time which a 
turbulent pipe flow needs to become fully developed. 

Thus, according to (24) and (28), a possible influence of the outer variables on 
the wall shear stress impedance is described by the ratio Sh/(Rcf)4, which is merely 
a function of the Strouhal number based on the outer variables: 

SJc M 3(Rcf)4. (28) 

GJ/(Rc,)4 = 2(Z8/2uri)4. (29 1 
The experimental values of 2, were obtained at values of S$/(Rcf)4 ranging from 0-1 
to 0.8; thus coincidence with the bursting frequency occurred within this range but 
S; was well below SAC, in most cases. The majority of the data were measured by the 
sound propagation method ($2). There are not, however, enough data to allow the 
necessary extrapolation to zero Mach number at fixed values of S,+ as well as of R. 
In order still to answer the question of whether or not the outer variables affect the 
wall shear stress impedance even a t  low values of Si/S2c, the extrapolation to M = 0 
was conducted separately for the three pipes investigated here. The result is plotted 
on figure 14. On the average, the Reynolds number associated with the data points 
at a definite S$ increases in proportion to the pipe diameter but, on the other hand, 
possible effects of the outer variables are extrapolated to low Reynolds numbers 
since the Mach number and the Reynolds number are proportional at a fixed pipe 
diameter. So definite Reynolds numbers cannot be assigned to the data points of 
figure 14 except by further assumptions about the possible effect of the outer vari- 
ables on the wall shear stress impedance. A rough estimation of the relation between 
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the outer and the inner Strouhal number in the case of the extrapolated wall shear 
stress impedance was based on the conjecture that the effect under consideration 
depends logarithmically on the outer Strouhal number. The dashed curves on figure 
15 depict the result of this estimation and the solid curve represents the data which 
were obtained in the resonator experiment (93). 80 a reasonable range of outer 
Strouhal numbers has been covered by the experiments [equation (29)]. However, 
the data points on figure 14 do not exhibit very significant differences between the 
three pipes for the sound propagation experiment nor between the results of two 
experiments which were conducted a t  rather different outer Strouhal numbers, 
according to figure 15. Only the data obtained in the narrowest pipe (2ri = 13 mm) 
seem to depart a little from the rest of the data, but it is not clear whether the 
measurement accuracy was sufficient in this case since the sound wavenumber was 
measured at only three different frequencies in the 13 mm pipe. 

Thus one may conclude that the wall shear stress impedance depends, at  most, 
rather weakly on the outer variables of the turbulent boundary layer for the small 
values of S f / S s ,  investigated here. This implies that the coincidence between the 
frequency of the shear wave and the bursting frequency has no noticeable effect on 
the wall impedance of the shear wave. 

4.4. Wall shear stress impedance in drag-reducing jiow 
As outlined in 94.2, Z,(83) contains information about the dynamic properties of 
the turbulence close to the wall. Even if it is not possible to obtain all the information 
which is needed to determine, for example, the hypothetical viscoelasticity of the tur- 
bulence as a function of the distance from the wall, it appears to be interesting to use 
this method to investigate the turbulence of drag-reducing flow of dilute solutions of 
high polymers. From the phenomenon of drag reduction it is obvious that only a 
little tuning of the right ‘knob ’ of the system turbulence is needed to modify greatly 
the equilibrium of this system. It seems that the viscoelasticity of the high polymer 
molecules plays a predominant role in this phenomenon (Bark, Hinch & Landahl1975)) 
and that the turbulence close to the wall is especially affected by the additives. 

Thus the wall shear stress impedance was measured in an aqueous 20p.p.m. 
Separan solution which exhibited a drag reduction of 40 yo at low shear stresses and 
25 yo at high shear stresses in agreement with measurements made by Whitsitt, 
Harrington & Crawford (1969). The measured values of 2, (83) obtained by the reso- 
nator pipe method are plotted on figure 16. The uncertainty of the data is much 
higher than in the case of pure water. To some extent, this is caused by the occurrence 
of higher flow velocities for the same values of 8f in the case of drag reduction. In  
spite of the large scatter in the data, one is able to realize that the real part of 2, is 
practically unaffected by the turbulence at 82 < 11 ; for 82 > 11 up to the maximum 
attainable 82, Re 2, is smaller than unity. By way of contrast, 2, departs from 1 + i 
a t  82 > 8 in Newtonian fluids. So the onset of influence of the interaction between 
the turbulence and the shear wave on the wall shear stress impedance is shifted to 
higher values of 83 in drag-reducing fluids. This corresponds to the thickening of the 
viscous sublayer in the high polymer solution; at 8s  = 11 a drag reduction of 25 yo 
is observed, which indicates that the thickness of the sublayer has been enlarged by 
a factor of 1.33 relative to that for Newtonian fluids. Thus, in fact, the onset of the 
response of the wall shear stress impedance to the turbulence should be shifted from 
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FIQURE 16. Normalized wall shear stress impedance in a 2Op.p.m. aqueous Separan solution; 

for comparison, the solid curves depict the result obtained in Newtonian fluids. 

83 = 8 to 83 = 10.7, if all other relations remain unchanged. At present, the maxi- 
mum value of 82 attainable in our experimental device is too small to allow any 
further statements about the wall shear stress impedance in drag-reducing flow, but 
measurements in a more suitable device are being prepared. The present device has 
some fundamental disadvantages with respect to the investigation of non-Newtonian 
fluids: is varied by variation of the flow velocity; this means, however, that the 
characteristics of the non-Newtonian fluid flow (e.g. the drag reduction) are varied 
simultaneously. Furthermore, the high friction velocity needed for sufficiently large 
values of 83 in the resonator pipe causes degradation of the high polymer additives. 

5. Conclusions 
SmalI amplitude sinusoidal shear waves have been excited at the wall of a pipe 

carrying fully developed turbulent flow. The waves are polarized in the flow direction 
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and propagate into the turbulent medium, from which they are partly reflected. So 
information on the stress-to-strain ratio associated with this definite coherent per- 
turbation of the turbulent flow is transported to the wall and can be extracted from 
the wall impedance of the shear wave. This impedance is the complex ratio of shear 
stress to velocity in the shear wave evaluated at the wall. 

When the shear wave decays within the inner portion of the turbulent boundary 
layer, the wall shear stress impedance essentially depends only on the Strouhal 
number based on inner variables. So the coupling between the inner and the outer 
layer revealed by the bursting phenomenon does not significantly influence the 
dynamics of the turbulent shear stress within the inner layer at the low Strouhal 
numbers (high 82) a t  which the wall shear stress impedance is affected by turbulent 
stresses. The general trend of the impedance as a function of the inner Strouhal 
number can be understood by simple geometric considerations: the shear wave is 
reflected from the edge of the viscous sublayer. The interference between the incident 
and the reflected wave becomes obvious through a minimum of the real part of the 
impedance. However, the minimum is even deeper than that predicted by a model 
which replaces the edge of the viscous sublayer by a rigid plate. This fact probably 
demonstrates a quasi-elastic behaviour of the turbulent medium for reasons which 
are outlined in $4.2. 

However the question of whether the turbulent stress in the shear wave can be 
described by a local effective viscoelasticity of the turbulent medium cannot be 
answered by the present investigation. Two simple models based on eddy visccsity 
and eddy viscoelasticity , respectively, failed completely. The minimum of the real 
part of the wall shear stress impedance is practically absent in the curves which are 
computed on the basis of these models. This indicates that the hypothetical effective 
viscosity either must be negative or must exhibit rather abrupt changes at the 
edge of the viscous sublayer. So it is rather unlikely that the shear stresses in the 
shear wave can be described by a local constitutive law of the turbulence. 

The shear stresses in the shear wave, as a function of the distance from the wall, 
cannot be evaluated explicitly from the wall shear stress impedance, and further 
experiments are necessary. Karlsson (1958), as well as Acharya & Reynolds (1975), 
has measured the oscillating component .ii of the streamwise velocity in a turbulent 
wall boundary layer with a small amplitude oscillating pressure gradient super- 
imposed in the streamwise direction. As in our sound propagation experiment, the 
oscillating velocity field is then composed of a plug flow and a shear wave excited 
at the wall. In  principle, the oscillating shear stress can be calculated from the 
velocity field; however Acharya & Reynolds did not obtain reliable results on doing 
so. The failure of their trial is probably caused by the fact that the tail of the shear 
wave is buried in the plug flow and cannot be extracted from the measured data with 
sufficient accuracy. So the experimental investigation of a pure shear wave excited 
by oscillations of the wall is more promising with respect to the evaluation of the 
oscillating shear stress. Such an experiment is being conducted in Gottingen at 
present. 

Last but not least, some progress in computing the sound propagation in low 
Mach number turbulent boundary layers has been achieved by the present investiga- 
tion. However, in many cases of practical interest, the Mach number is not small and 
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the convective term in the momentum equation affects the propagation of the shear 
wave. So somewhat deeper insight into the dynamics of the Reynolds stresses may 
possibly be obtained by comparing the sound wavenumber measured at moderate 
Mach numbers ( $ 2 )  with values predicted on the basis of the stress-to-strain ratio 
measured in a shear wave exhibiting no variation in the streamwise direction (absence 
of convective terms). Information on how the stress-to-strain ratio depends on the 
form of the coherent perturbation may be yielded by this procedure. 

The experiments with the oscillating pipe were sponsored by the Procurement 
Executive, Ministry of Defence, London. One of the authors (D.R.) is also indebted 
to the Deutsche Forschungsgemeinschaft, which supported the work connected with 
the experiment described in $ 2 .  The rather extended numerical calculations were 
performed on a Honeywell H 632 computer which was funded by the Stiftung 
Volkswagenwerk. 

Appendix 
Calculation of the wave propagation in a tube containing a flzcid 

It is assumed that the wavelength is large compared with the diameter of the tube. 
Then one obtains for the tube 

act a$t 2rq 
a, ax r2-r: 7 

pt-+-+--z (?Zt-?Zw) = 0, 

-+--- a$, 2 r: a$w ) = 0  
at mr2-r; at 

and for the fluid 

Here the subscripts t and w refer to the tube and to the fluid, respectively, -fit 
the tension stress in the axial direction, 6, is the oscillatory velocity of the fluid 
averaged over the cross-section and E and m-1 are the Young’s modulus and Poisson 
number of the tube material. Equations (A 1) and (A 3 )  are based on the conservation 
of momentum and (A 2) and (A 4.) reflect the conservation of matter, regarding the 
deformation of a tube exposed to tension stress and to internal pressure. Introducing 
the wave factor exp [i(wt- kz)] and the sound velocity C, = (E /p t ) i  for the empty 
tube yields 

= O .  (A 6) 
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To begin with (A 5 )  is solved for z, = 0. Essentially, two different solutions are 
obtained, corresponding to waves which propagate mainly in the tube or in the fluid, 
respectively: (a) the tube wave 

( b )  the fluid wave 

r 2 r )  

i), = @)I 

, 

Sincelz,l < riopw, the full solution of (A 5 )  is obtained by a perturbation calculation. 
In  addition, it turns out that only the wavenumber accurate to linear terms of z, is 
needed in the next subsection. Introducing 

yields 
kq = (w/c;)2+6(&), k; = (w/c;)"+(k;) 
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Calculation of the complex resonance frequency of the resonator 
described in $ 3.2 

The resonator is excited by a thin ring of PZT (see figure 6). The excitation is most 
efficient when the load, i.e. the mechanical impedance of the end of the resonator, is 
a minimum. Because of the high quality factor of the resonance considered here, it 
is reasonable to assume that other possible resonances of the complex structure of 
the resonator are either so broad or so far away that they do not influence the 
resonance curve, which is expressed in terms of the input impedance of the resonator: 

C’ can be regarded as constant within a narrow range of frequencies around the 
resonance. Indeed, it turns out that experimental values agree very well with 
(A 7). Furthermore, the changes in the complex resonance frequency caused by the 
actions of the wall shear stress impedance z, and the sound radiation into the flow 
system are additive if these actions themselves do not exhibit strong dependence on 
the frequency. For this reason and because the imaginary part of Q is very small 
compared with the real part, the change in Q can be calculated assuming sl, to be 
real (Q0 is the resonance frequency for 2, = 0 and for L,, = Lwb = 0,  where L,, = 
[ - Gw/@w]x=-l and L,, = [Gw/pw]pl are the water sound admittances at the ends of 
the central pipe carrying the turbulent flow). Also it is assumed that 

where Ltb = [Ct/@t]x- l  and lend is the effective length of the end pieces of the resonator 
(this assumption is equivalent to lQo/c; = in). Decomposition of the pressures and 
of the velocities into four waves yields 

Cwl exp (ik,l) -Gw2 exp ( -ikwZ)+Gwtl exp (iktl)-Gwt2 exp ( -iktl) 
flwl exp (ik, I )  + exp ( - ikw 1) + flWtl exp (ik, 2) + gd2 exp ( - ikt I) ’ 

L,, = - 
(A 9 4  

(A 9b)  
Cwl exp ( - ik, I )  - Gw2 exp (ik, I )  + G&l exp ( - ikt I )  - iiwt2 exp (iktl) 
@-1exp (-ik,l)+@w2exp (ikwl)+@&lexp ( - ik t l )+@wt2  exp(ik,l)’ 

L* = 

and analogous relations for Ltb and L,, = [Gt/@,Iz-+, where the indices 1 and 2 
stand for waves propagating in the i- x directions respectively. Approximating 
exp ( & iktl) by & i( 1 + 8kt I )  and solving ( A 9 )  for L,, yields 

8 pw r; 1 ---- 

I m2 pt  !rz - T$ ptck 1 + iw tan kwl - 281 
(w + i tan kwl) (1  + iw tan kJ) - 2i85 tan kJ ’ + 

(A 10) 
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Finally, one obtains by transformation of L,, into the input impedance 2, of the 
resonator and by comparison with (A 7) 

463 

where Skt = S ( ~ ; ) / ( ~ W / C ; ) ,  W = 2pwCh/(L,b + Lwu) and 8, = (Lwb -Lwu)/(Lwb + Lwa). 
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